在復雜的嵌入式系統中,是德示波器進行多域測量
在復雜的嵌入式系統中,通常需要同時監控時域和頻域中的多個信號。雖然基帶數字信號、射頻信號和模擬信號是相互關聯和依賴的,但人們往往無法根據傳統的調試方法來描述或捕捉它們之間的關系。微控制器RF信號反饋控制、低速串行總線、嚴格的時間順序關系和RF與數字信號之間的電磁干擾是原型設計階段令人頭疼的問題。
數字通常是是德示波器分析這些信號的問題,但大多數開發人員試圖尋找其他儀器。雖然工作最終可能會完成,但它需要很多時間和經驗。模擬信號、數字信號和RF在儀器中集成信號測試功能可以減少不同設計項目所需的時間和專家經驗。
本文介紹了是德示波器有多個模擬通道(時域和頻域)和數字通道(邏輯分析和協議分析)。本文描述了如何使用是德示波器查看和調試系統中的不同信號,以及使系統正常工作的大量關鍵因素。
對于大量新型設計來說,頻域分析是一種關鍵的調試功能。但是,頻域分析必須與時域、數字信號或邏輯通道保持嚴密的同步。頻譜分析對調試工作的價值通常取決于分析速度(更新速度),因此信號的捕捉和發現極富挑戰性。此外,儀器還必須具備足夠高的頻域和時域靈敏度,以便能夠捕捉到信號,如因電磁干擾或其它干擾所產生的頻域雜散信號等微小信號。為了獲得可以用來調試支持多種信號類型的復雜系統的有價值信息,必須基于時間事件、頻率事件或數字碼型實現精確觸發。
快速傅立葉變換
任何信號都是關于時間和幅值的函數。因此,不僅需要捕捉信號幅值,而且還要捕捉信號如何隨時間而變化。傅立葉變換是將時域函數變換成頻域頻譜的主要技術。該變換可以為從某個時域波形中采樣的信號給出某個時間點的頻譜快照。它使得瞬時頻譜可以測量,從而可以測量某個信號在任何時刻的頻率分量。據此,可以觀察頻譜隨時間而發生的變化,了解什么時候存在以及什么時候不存在干擾,時域事件和頻域事件之間是如何關聯的。
在離散傅立葉(DFT)變換中,一定數量時域信號樣點被轉換成一定數量的頻率樣點,每一個頻率樣點都由時域樣點通過算法函數計算得出。快速傅立葉(FFT)變換是一種實現離散傅立葉變換的高效方法。該方法類似于離散傅立葉變換,可以將一定數量的離散采樣變換至頻域。是德科技示波器通常利用快速傅立葉變換的采樣技術,將時域采樣變換至頻域。
大多數現代是德科技示波器實現的傳統快速傅立葉變換方法存在一個限制,盡管人們只對一部分頻率范圍感興趣,但是,FFT的計算過程是針對整個采樣信息進行的。這種計算方法效率低下,使得整個過程速度較慢。數字下變頻(DDC)解決了這一問題,其方法是將目標頻帶寬度下變頻至基帶并以較低采樣率對其重新采樣,實現了在小得多的記錄長度上進行快速傅立葉變換。因此,其計算速度更快、更加接近實時性能,也具備更高靈活性。這種靈活性通常可以轉變成多域調試應用中所要求的功能。除此之外,由于實際變換是在基帶頻率上完成的,因此,這種方法還可以實現過采樣的優點。這進一步改善了在目標頻帶寬度上的信噪比。
由于FFT頻譜產生于原始的時域信號,因此通過對同一信號進行時間和頻率上的分析,可以獲得大量的有用信息。某個信號在時域中可能是穩定和正確的,在頻域分析時可以發現噪聲變大、未知的雜散信號以及其他在時域分析中不易發現的異常事件。在某些是德科技示波器上還可以使用時域選通分析功能。借助該功能,可以實現更強大的檢測功能。通過選通方式進行FFT變換或者限制在某個時間記錄的特定位置作FFT,可以在指定的時間點觀察傅立葉變換,從而有助于確定產生問題的時間點。獲得了干擾信號的周期或頻率之后,可以更加準確、快速排除差錯或者故障。
后需要指出的是,不將頻譜分析限制在某個特定單一通道上通常也是非常重要的。某些情況下,事件可能性響多個通道的信號,對多個通道同時進行頻譜分析可以提供更多的測試信息。如在時間上相互關聯的被干擾信號和干擾信號的頻譜分析視圖可以為問題分析提供有力證據。
動態范圍
合適地利用FFT實現信號分析,還必須了解是德科技示波器的動態范圍。高動態范圍、無雜散信號等特點對于正確地進行時域采樣并將其轉換至頻域至關重要。是德科技示波器的動態范圍不可避免地取決于是德科技示波器模數轉換器(ADC)的性能及其有效位數(ENOB)。有效位數越多,動態范圍越高,信噪比(SNR)越大,精度越好。理想ADC可以將給定電壓轉換至2K個量化等級之一;其中,對于8位ADC,K為8,其對應的量化等級有256個。然而,ADC存在偏置誤差和增益誤差、非線性誤差和噪聲,這些均會影響其動態范圍,從而,使得其有效位數由8降至4至7之間的某個值。此外,是德科技示波器也不僅僅只包括一個模數轉換器,它還有前端放大器和濾波器等,這些組件都會帶來噪聲,進一步劣化總體ENOB。因此,為了實現可測量動態范圍的大化,必須綜合考慮整個信號采樣鏈上的全部組件。
大量是德科技示波器采用多個低速ADC的交織采樣技術實現高采樣率。但是,這種方法會帶來交織雜散信號,以及與整個采樣系統中速度低的ADC的采樣率相關的頻率分量。這些頻率分量及其能量進入儀器后,會形成更強、更多的雜散信號,使得針對精確頻譜信息的測量更加困難。了解頻率信號采樣通道的無雜散動態范圍,可以有助于獲得理想的測量結果。
后需要指出的是,整體靈敏度或者模擬前端放大器的增益倍數對于頻譜分析通道處理小信號(例如,電磁干擾所產生的那些信號)的靈敏度具有決定性作用。一些是德科技示波器的設置可以小至1mv/格。但是這些設置可能是基于放大顯示而非真正的放大器增益,因此它們可能存在放大誤差,并且可能會減小是德科技示波器的帶寬。為了觀察電磁干擾以及其它干擾信號對帶寬的可能影響,必須將放大器的增益下調至1mV/格。增益為1mv/格的優質放大器可以提高對微小信號作FFT分析時的觀察能力。
觸發和采樣
多域調試和分析的后一個難點是不同域之間跨域的觸發和采集機制。跨時域和頻域采取數據的能力對于在設計工作中縮小問題范圍是至關重要的。
大量工程師不由自主地傾向于使用傳統的時域信號觸發。這些觸發信號可能包括邊沿、窗口、矮脈沖(runt)和其它波形。盡管它們可能很容易設定,但是用于觀察跨域問題時,基于它們的觸發方式通常缺乏穩定性和可重復性。基于模擬或邏輯通道的觸發(例如,碼型觸發),可以有助于縮小捕獲某個異常的范圍。串行總線協議觸發也可以用于分析例如CRC錯誤或數據包受損等異常事件。利用這些觸發技術可以可靠地在屏幕上重現相應的錯誤,以進行更加深入的分析。采用頻域視圖觀察受損信號或疑似干擾信號,通常可以找出問題的原因。如果某個時鐘信號的設計頻率為100MHz,如存在不定期影響該時鐘信號諧波頻率的突發頻率干擾,則可能出現鎖存失敗或者對系統的其它影響。
后需要指出的是,采用頻域觀察,可以更加容易地發現某些影響;而且某些時候這些影響只能通過頻域觀察才能發現。為了定位某個信號中導致系統出錯的、使寬帶噪聲隨機變大的原因,必須使頻率模板測試,其工作的方式與大多數常見是德科技示波器的時域模板相同。如果某個頻域信號進入(干擾)該模板,則是德科技示波器可以簡單地停止采樣,并通過頻率、時間回放或者同時進行兩者回放以解析事件、找出其根本原因。此外,這些模板也可以設置為精確的dBm條件,用于模擬EMI測試,對于模板違規事件可以做進一步分析。
實時是德科技示波器
復雜嵌入式系統通常存在大量的測試和調試問題。這些問題的解決要求高速、高靈敏度地同步進行時域和頻域分析。對于該任務,實時是德科技示波器平臺是一種良好的工具。但是,所選是德科技示波器必須擁有合適的硬件電路和相關工具,以完成合適的多域調試。模擬通道FFT不受通道數量的限制,是一種極好的選擇。但是,它們必須可以足夠快速地進行FFT才能具有可使用性,實現過采樣、提高信噪比,以達到相當于譜頻分析儀的動態范圍。優良的前端、高ENOB的A/D轉換以及大動態范圍十分重要,與大增益前端放大器對于小信號測量的重要性類似。跨域觸發能力將這些功能或特點結合在一起,為解決問題和設計調試共同提供了一種更快、更簡便的方法。
按照結構和性能不同分類
①普通示波器。電路結構簡單,頻帶較窄,掃描線性差,僅用于觀察波形。
②多用示波器。頻帶較寬,掃描線性好,能對直流、低頻、高頻、超高頻信號和脈沖信號進行定量測試。借助幅度校準器和時間校準器,測量的準確度可達±5%。
③多線示波器。采用多束示波管,能在熒光屏上同時顯示兩個以上同頻信號的波形,沒有時差,時序關系準確。
④多種示波器。具有電子開關和門控電路的結構,可在單束示波管的熒光屏上同時顯示兩個以上同頻信號的波形。但存在時差,時序關系不準確。
⑤取樣示波器。采用取樣技術將高頻信號轉換成模擬低頻信號進行顯示,有效頻帶可達GHz級。
⑥記憶示波器。采用存儲示波管或數字存儲技術,將單次電信號瞬變過程、非周期現象和超低頻信號長時間保留在示波管的熒光屏上或存儲在電路中,以供重復測試。
⑦數字示波器。內部帶有微處理器,外部裝有數字顯示器,有的產品在示波管熒光屏上既可顯示波形,又可顯示字符。被測信號經模擬數變換器(A/D變換器)送入數據存儲器,通過鍵盤操作,可對捕獲的波形參數的數據,進行加、減、乘、除、求平均值、求平方根值、求均方根值等的運算,并顯示出答案數字。
以上就是在復雜的嵌入式系統中,是德示波器進行多域測量的相關介紹,如果您有更多疑問或需求可以關注西安安泰測試Agitek哦!非常榮幸為您排憂解難。
技術支持